Note

Synthesis of 5-(β-p-ribofuranosyl)-1,2,3,4-tetrahydrophthalazine-1,4-diones*

ISAMU MAEBA, TOMOYUKI ISHIKAWA, AND HIROSHI FURUKAWA

Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 468 (Japan)

(Received July 9th, 1984; accepted for publication, September 15th, 1984)

Since discoveries that several of the naturally occurring C-nucleosides² have interesting biological properties, considerable effort has been directed toward the synthesis of many structural analogues. One of the principal synthetic methods employed in the C-nucleoside area involves "ribose"-derived intermediates in which a side chain of one to three carbon atoms, variously functionalized, is attached through a β linkage to the original anomeric carbon atom. This side chain has then provided the basis for the construction of a multitude of heterocyclic rings³. During the course of our research, we have developed a preparative procedure for the versatile C-nucleoside precursor 2-(2,3,5-tri-O-benzoyl-β-Dribofuranosyl)furan (four carbon atoms), and have utilized it in the synthesis of pyridazine⁴ and phthalimide C-nucleosides⁵. We now report the synthesis of hitherto unknown phthalazine C-nucleosides by cyclization of the phthalic esters, 3 and 6, which were obtained by aromatization of the Diels-Alder adduct, dimethyl 1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-7-oxabicyclo[2.2.1]hepta-2,5-diene-2,3dicarboxylate⁵ (1). Treatment of 1 with concentrated sulfuric acid in dichloromethane at room temperature afforded the aromatized compound, dimethyl 6-hydroxy-3-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)phthalate (2) in 49% yield, which was purified by column chromatography on silica gel. The presence of ester-group signals at δ 3.75 and 3.87 are characteristic in the ¹H-n.m.r. spectrum of 2. Cyclization of 2 with hydrazine hydrate under a variety of conditions proved unsuccessful. Thus, the O-methylation of 2 with diazomethane in ether afforded dimethyl 6-methoxy-3-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)phthalate (3) quantitatively.

Cyclization of **3** with hydrazine hydrate in methanol afforded, after purification by preparative t.l.c., the fully deprotected 8-methoxy-5-(β -D-ribofuranosyl)-1,2,3,4-tetrahydrophthalazine-1,4-dione (**4**) in 51% yield. Compound **4** could be obtained crystalline in high purity, and was readily identifiable by its ¹H-n.m.r.

^{*}Part 4 of the series C-Nucleosides. For Part 3; see ref. 1.

NOTE 333

334 NOTE

spectrum and by elemental analysis. Cyclization of dimethyl 3-(2,3,5-tri-O-benzoyl- β -D-ribofuranosyl)phthalate⁵ (6) by the same procedure just described afforded 5-(β -D-ribofuranosyl)-1,2,3,4-tetrahydrophthalazine-1,4-dione (7) in 20% yield. For assignment of the anomeric configurations, of 4 and 7, the data obtained from the 2',3'-O-isopropylidene derivatives 5 and 8 were used as a basis for the determination. The ¹H-n.m.r. chemical-shift differential value ($\Delta\delta$) for the methyl groups in the O-isopropylidene derivatives 5 (0.3 p.p.m.) and 8 (0.32 p.p.m.) are indicative of the β stereochemistry, in accordance with Imbach's rules⁶.

EXPERIMENTAL

General methods. — Melting points were determined on a Yanagimoto apparatus and are uncorrected. Infrared spectra were recorded with a JASCO IRA-1 spectrometer. ¹H-n.m.r. spectra were recorded with a JEOL JNM-PS-100 spectrometer, with tetramethylsilane as the internal standard. Analytical thin-layer chromatography was performed on glass plates coated with a 0.25-mm layer of silica gel GF₂₅₄ (Merck). The compounds were detected with u.v. light (254 nm). Column chromatography was performed on silica gel C-200 (74–149 μm, Wakogel).

Dimethyl 6-hydroxy-3-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)phthalate (2). — To a stirred solution of compound⁵ **1** (870 mg, 1.3 mmol) in dichloromethane (10 mL) was added 10 drops of concentrated sulfuric acid. The mixture was stirred for 48 h at room temperature. The solvent was removed *in vacuo* below 30° to a syrup that was purified on a silica gel column with purified chloroform as the eluent, to afford 420 mg of **2** (48%) as a colorless syrup; $[\alpha]_D^{20}$ -15.6° (c 0.48, CHCl₃); $\nu_{\text{max}}^{\text{CHCl}_3}$ 1730, 1680 cm⁻¹; ¹H-n.m.r. (CDCl₃): δ 3.75, 3.87 (s, 3 H each, CH₃), 4.49–4.98 (m, 3, H-4', H-5'), 5.23 (d, 1, $J_{1',2'}$ 6 Hz, H-1'), 5.62, 5.82 (t, 1 H each, $J_{1',2'}$ = $J_{2',3'}$ = $J_{3',4'}$ = 6 Hz, H-2', H-3'), 6.97 (d, 1, $J_{4,5}$ 9 Hz, H-5), 7.72 (d, 1, $J_{4,5}$ 9 Hz, H-4), 7.19–8.19 (m, 15, Ar H), and 10.94 (s, 1, OH).

Anal. Calc. for C₃₆H₃₀O₁₂: C, 65.62; H, 4.53. Found: C, 66.05; H, 4.62.

Dimethyl 6-methoxy-3-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)phthalate (3). — To a solution of **2** (500 mg, 0.8 mmol) in Et₂O-MeOH (10:1, 5.5 mL) was added 13 mL of Et₂O containing diazomethane, and the resulting solution was stored at room temperature for 17 h. After processing, acetic acid was added, and evaporation of the solvent *in vacuo* gave a syrup that was purified on a column of silica gel with 1:2 chloroform-hexane as the eluent, to afford 490 mg of **3** (96%) as a color-less syrup; $[\alpha]_D^{25}$ -17.8° (*c* 1.11, CHCl₃); $\nu_{max}^{CHCl_3}$ 1725, 1600, 1580 cm⁻¹; ¹H-n.m.r. (CDCl₃): δ 3.67 (s, 3, CH₃), 3.77, 3.81 (s, 3 H each, ester CH₃), 4.27–4.99 (m, 3, H-4', H-5'), 5.64 (m, 3, H-1', H-2', H-3'), 6.82 (d, 1, $J_{4,5}$ 9 Hz, H-5), and 7.10–8.07 (m, 16, Ar H, H-4).

Anal. Calc. for C₃₇H₃₂O₁₂: C, 66.24; H, 4.96. Found: C, 66.46; H, 4.82.

8-Methoxy-5-(β-D-ribofuranosyl)-1,2,3,4-tetrahydrophthalazine-1,4-dione (4). — A solution of 3 (150 mg, 0.22 mmol) and hydrazine hydrate (0.3 mL) in methanol (7.5 mL) was boiled under reflux for 3 h. After removal of the solvent in

NOTE 335

vacuo, the residue was crystallized from ethanol to give pure **4**; yield 37 mg (50%); m.p. 225–227°, [α]_D²⁵ +37.5° (c 0.02, methanol); $\nu_{\rm max}^{\rm KBr}$ 3280, 1715 cm⁻¹; ¹H-n.m.r. (Me₂SO- d_6): δ 3.48–3.87 (m, 5, H-2′, H-3′, H-4′, H-5′), 3.89 (s, 3, CH₃), 4.77 (m, 5, NH, OH), 5.57 (d, 1, $J_{1',2'}$ 6 Hz, H-1′), 7.37 (d, 1, $J_{6,7}$ 9 Hz, H-7), and 7.93 (d, 1, $J_{6,7}$ 9 Hz, H-6).

Anal. Calc. for $C_{14}H_{16}N_2O_7 \cdot 0.5 H_2O$: C, 51.22; H, 5.06; N, 8.62. Found: C, 51.14; H, 5.06; N, 8.52.

5-(2,3-O-Isopropylidene- β -D-ribofuranosyl)-8-methoxy-1,2,3,4-tetrahydrophthalazine-1,4-dione (5). — Ethyl orthoformate (0.16 mL) was added to a well-stirred suspension of 4 (20 mg, 0.06 mmol) in acetone (1 mL) containing p-toluenesulfonic acid monohydrate (9 mg) and the mixture was kept for 16 h at room temperature. The resulting solid was collected by filtration and thoroughly washed with acetone. The filtrates were combined and evaporated to dryness, and the residue was chromatographed on a column of silica gel with 100:7 chloroformethanol as the eluent, to afford 12 mg (54%) of 5 as a light-yellow solid, m.p. 222-223°; ¹H-n.m.r. (CDCl₃): δ 1.34 (s, 3, isopropylidene CH₃), 1.64 (s, 3, isopropylidene CH₃), 2.72 (br s, 1, OH), 3.84-3.98 (m, 2, H-5'), 4.00 (s, 3, CH₃), 4.02-4.28 (m, 3, NH, H-4'), 4.73 (m, 1, H-2'), 4.96 (m, 1, H-3'), 5.30 (d, 1, $J_{1',2'}$ 6 Hz, H-1'), 7.15 (d, 1, $J_{6.7}$ 8 Hz, H-7), and 7.66 (d, 1, $J_{6.7}$ 8 Hz, H-6).

5- $(\beta$ -D-Ribofuranosyl)-1,2,3,4-tetrahydrophthalazine-1,4-dione (7). — The same procedure was used as for the reaction of 3 with hydrazine hydrate.

Compound 7 was isolated in 20% yield; m.p. 215–216°, $[\alpha]_{0.04}^{25}$ +44.4 (c 0.04, methanol); $\nu_{\text{max}}^{\text{KBr}}$ 3340, 1705 cm⁻¹; ¹H-n.m.r. (Me₂SO- d_6): δ 3.10–4.20 (m, 5, H-2′, H-3′, H-4′, H-5′), 4.88 (apparent s, 5, OH, NH), 5.58 (d, 1, $J_{1',2'}$ 6 Hz, H-1′), 7.70 (m, 2, H-6, H-7), 7.97 (m, 1, H-8).

Anal. Calc. for $C_{13}H_{14}N_2O_6 \cdot 1.5 H_2O$: C, 49.02; H, 4.49; N, 8.73. Found: C, 48.60; H, 5.33; N, 8.72.

5-(2,3-O-Isopropylidene-β-D-ribofuranosyl)-1,2,3,4-tetrahydrophthalazine-1,4-dione (8). — The same procedure was used as for the reaction of 4 with acetone. ¹H-n.m.r. (CDCl₃): δ 1.37 (s, 3, isopropylidene CH₃), 1.68 (s, 3, isopropylidene CH₃), 2.62 (br s, 1, OH), 3.97 (m, 2, H-5'), 4.00–4.29 (m, 3, NH, H-4'), 4.70 (dd, 1, $I_{1',2'}$ 5, $I_{2',3'}$ 6 Hz, H-2'), 4.98 (dd, 1, $I_{2',3'}$ 6, $I_{3',4'}$ 8 Hz, H-3'), 5.41 (d, 1, $I_{1',2'}$ 5 Hz, H-1'), and 7.60–7.88 (m, 3, Ar H).

REFERENCES

¹ Part 3: I. MAEBA, F. USAMI, T. ISHIKAWA, H. FURUKAWA, T. ISHIDA, AND M. INOUE, Carbohydr. Res., in press.

² R. J. SUHADOLNIK, Nucleoside Antibiotics, Wiley-Interscience, New York, 1970.

³ S. HANESSIAN AND A. G. PERNET, Adv. Carbohydr. Chem. Biochem., 33 (1976) 111-188.

⁴ I. MAEBA, K. IWATA, F. USAMI, AND H. FURUKAWA, J. Org. Chem., 48 (1983) 2998-3002.

⁵ I. MAEBA, F. USAMI, AND H. FURUKAWA, J. Org. Chem., 49 (1984) 1534-1537.

⁶ J.-L. IMBACH AND B. L. KAM, J. Carbohydr. Nucleos. Nucleot., 1 (1974) 271-273.